skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Molla, Md. Tahmidul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thermal physiology and psychophysics are complex and nuanced, with significant variability between individuals. Wearable devices have the potential to offer customizable microclimate control. However, individual experiences with different supplemental heating strategies are likely to vary considerably in unconstrained environments. The physiological responses, psychophysical effects, and qualitative experiences of participants using five readily available heating strategies were collected in a quasi-field study environment ( n=17). Although all devices maintained or increased fingertip temperature, effects observed from controlled studies of thermal physiology are not clearly seen. Physiological, perceptual, and experiential data are presented, exploring heating technologies and thermal comfort in typical indoor environments. 
    more » « less
  2. The emergence of on-skin interfaces has created an opportunity for seamless, always-available on-body interactions. However, developing a new fabrication process for on-skin interfaces can be time-consuming, challenging to incorporate new features, and not available for quick form-factor preview through prototyping. We introduce SkinKit, the first construction toolkit for on-skin interfaces, which enables fast, low-fidelity prototyping with a slim form factor directly applicable to the skin. SkinKit comprises modules consisting of skin-conformable base substrates and reusable Flexible Printed Circuits Board (FPCB) blocks. They are easy to attach and remove under tangible plug-and-play construction but still offer robust conductive connections in a slim form. Further, SkinKit aims to lower the barrier to entry in building on-skin interfaces without demanding technical expertise. It leverages a variety of preprogrammed modules connected in unique sequences to achieve various function customizations. We describe our iterative design and development process of SkinKit, comparing materials, connection mechanisms, and modules reflecting on its capability. We report results from single- and multi- session workshops with 34 maker participants spanning STEM and design backgrounds. Our findings reveal how diverse maker populations engage in on-skin interface design, what types of applications they choose to build, and what challenges they faced. 
    more » « less
  3. Abstract Heating devices offer particular benefits in cold climates and to those with thermoregulatory or vasospastic disorders, like Reynaud’s syndrome. Heating devices can be used to moderate a wearer’s microclimate to alleviate thermal discomfort and pain, especially in the distal extremities where thermal sensitivity is the highest. Applying insulation on top of wearables with heating components can reduce both heat lost to the environment, as well as power needs for maintaining thermal comfort. Here, we evaluated one stitched, heated textile garment with eight textile insulation materials to assess heat propagation (measured by five thermistors on a mannequin hand and one in the surrounding, enclosed environment) and wearability (measured from tests of fabric weight, thickness, flexural rigidity, and permeance). Results find energy conserved by all materials, but wearability drawbacks for some strong insulators. Thicker materials generally had higher insulative properties, and reduced heat propagation to the indirect heating regions, specifically the finger and thumb. Additionally, heat propagation through to the environment was stronger than to the finger and thumb. 
    more » « less